Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Susanne Brodesser, ${ }^{\text {a }}$ Thomas Mikeska, ${ }^{\text {a }}$ Martin Nieger ${ }^{b}$ and Thomas Kolter ${ }^{\text {a }}$

${ }^{\text {a }}$ Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-DomagkStraße 1, 53121 Bonn, Germany, and ${ }^{\text {b }}$ Institut für Anorganische Chemie der Universität, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany

Correspondence e-mail: tkolter@uni-bonn.de

Key indicators

Single-crystal X-ray study
$T=123 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.044$
ωR factor $=0.111$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1,1-Dimethylethyl N-propanoylcarbamate

The title compound, $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3}$, has been obtained as a byproduct of an epoxidation reaction. The molecules are linked by nearly symmetrical, bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming infinite chains parallel to the c axis.

Comment

The title compound, (I), has been obtained in trace amounts as an unexpected by-product in the epoxidation of 1,1 -dimethylethyl $1(S)$-ethylprop-2-enylcarbamate with 3-chloroperoxybenzoic acid. It has been prepared previously by different routes (Tanaka et al., 1988; Meffre et al., 1996).

(I)

The molecular structure of (I) is shown in Fig. 1. The bond angles $\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1, \mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2, \mathrm{O} 2-\mathrm{C} 4-\mathrm{O} 3$ and $\mathrm{O} 2-$ $\mathrm{C} 4-\mathrm{N} 1$ are larger than 120° and range from 123.4 (2) to 126.3 (2) ${ }^{\circ}$ (Table 1). The two carbonyl groups $\mathrm{C} 1=\mathrm{O} 1$ and $\mathrm{C} 4=\mathrm{O} 2$, as well as their attached atoms $\mathrm{C} 2, \mathrm{~N} 1$, and O 3 , are nearly in a plane, as seen from torsion angles $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-$ C 2 and $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{O} 3$ (Table 1).

The molecular arrangement in the crystal structure is characterized by the presence of a nearly symmetrical bifur-

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level for the non-H atoms.

Received 22 July 2003
Accepted 25 July 2003
Online 23 August 2003

Figure 2
The crystal structure of (I) projected along the c axis, showing the packing of the infinite chains. H atoms have been omitted, except for the carbamate H atom.
cated intermolecular hydrogen bond (Table 2), forming infinite chains parallel to the c axis (Fig. 2). In these chains, four molecules build a repeating unit (Fig. 3). According to Steiner (2002), this hydrogen bond can be categorized as moderately strong. The crystal structure of a related compound, viz. 2(S)-N-tert-butoxycarbonylamino- N -methoxy-N-methylbutanamide (Sawatzki et al., 2002), in which the amide carbonyl O atom of (I) is replaced by an N -methoxy- N methylamide group, shows an entirely different network of hydrogen bonds.

Experimental

Glassware was flame-dried under an argon atmosphere and allowed to cool. The starting material, 1,1-dimethylethyl $1(S)$-ethylprop-2enylcarbamate, was prepared from $2(S)$-N-tert-butoxycarbonyl-amino- N-methoxy- N-methylbutanamide (Sibi, 1993; Sawatzki et al., 2002). In brief, this Weinreb amide was reduced to the aldehyde by lithium aluminium hydride, followed by a Wittig reaction with methylene triphenylphosphoranylidene to the starting material according to a published procedure (Campbell et al., 1998). The starting material $(4.77 \mathrm{~g}, 25.8 \mathrm{mmol})$ was dissolved in a mixture of dichloromethane (260 ml) and a 0.5 M aqueous solution of sodium hydrogencarbonate (240 ml). After cooling to $273 \mathrm{~K}, 70 \% 3$-chloroperoxybenzoic acid (m CPBA) ($19.08 \mathrm{~g}, 77.4 \mathrm{mmol}$) was added in small portions. The reaction mixture was stirred at room temperature for 1 h , cooled to 273 K again, and $70 \% m \mathrm{CPBA}(19.08 \mathrm{~g}, 77.4 \mathrm{mmol})$ was added. After stirring for another hour, the same amount of m CPBA was added and stirring was continued overnight. The organic and the aqueous phases were separated. The organic phase was subsequently washed with a $1 M$ solution of sodium hydroxide, with water, and dried over sodium sulfate. After evaporation of the solvent, the resulting residue was purified by column chromatography on silica gel using hexane/ethyl acetate (5:1) as eluent. The major product was separated, and one fraction containing a substance eluting with $R_{F}=0.23$ was further analysed. On slow removal of the solvent, a few colourless crystals of (I) were obtained, which were suitable for X-ray analysis. Spectroscopic data were in accordance with literature data (Tanaka et al., 1988; Meffre et al., 1996).

Figure 3
Enlarged excerpt of the crystal packing, showing that four molecules constitute a repeating unit. H atoms have been omitted, except for the carbamate H atom.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3}$
$M_{r}=173.21$
Tetragonal, $I 4_{1} / a$
$a=16.5136$ (9) £̊
$c=14.9106$ (8) \AA
$V=4066.1(4) \AA^{3}$
$Z=16$
$D_{x}=1.132 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4015 reflections
$\theta=1-25^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=123$ (2) K
Plate, colourless
$0.30 \times 0.10 \times 0.05 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
φ and ω scans with 1° frames
Absorption correction: none
13978 measured reflections
1792 independent reflections 928 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.078 \\
& \theta_{\max } 25.0^{\circ} \\
& h=-19 \rightarrow 12 \\
& k=-19 \rightarrow 19 \\
& l=-17 \rightarrow 17
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.111$
$S=0.89$
1792 reflections
112 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0547 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C1	$1.212(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.376(3)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.207(2)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.377(3)$
$\mathrm{O} 3-\mathrm{C} 4$	$1.343(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.496(3)$
O1-C1-N1	$123.5(2)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{O} 3$	$126.3(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$123.4(2)$	$\mathrm{O} 2-\mathrm{C} 4-\mathrm{N} 1$	$125.7(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$113.1(2)$	$\mathrm{O} 3-\mathrm{C} 4-\mathrm{N} 1$	$108.03(19)$
C4-N1-C1-O1	$-3.9(4)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{O} 2$	$3.3(4)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$176.0(2)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{O} 3$	$-176.36(19)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$10.4(3)$	$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 8$	$66.2(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-169.5(2)$	$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 7$	$-58.9(3)$
$\mathrm{C} 5-\mathrm{O} 3-\mathrm{C} 4-\mathrm{O} 2$	$-0.7(3)$	$\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 5-\mathrm{C} 6$	$-176.10(19)$
$\mathrm{C} 5-\mathrm{O} 3-\mathrm{C} 4-\mathrm{N} 1$	$178.97(17)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(2)$	$2.18(2)$	$2.943(2)$	$146.8(19)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.87(2)$	$2.26(2)$	$2.933(2)$	$134.8(18)$

Symmetry code: (i) $\frac{5}{4}-y, \frac{3}{4}+x, z-\frac{1}{4}$.
The carbamate H atom was located in a difference Fourier map and the coordinates were refined freely, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. Other H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.98-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\mathrm{CH}_{2}\right)$ or $1.5 U_{\text {eq }}\left(\mathrm{CH}_{3}\right)$.

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Sheldrick, 2001); software used to prepare material for publication: SHELXL97.

The authors thank Professor Dr K. Sandhoff and the Deutsche Forschungsgemeinschaft (Forschergruppe Keratinozyten, GRK 246) for financial support.

References

Campbell, A. D., Raynham, T. M. \& Taylor, R. J. K. (1998). Synthesis, pp. 1707-1709.
Meffre, P., Gauzy, L., Branquet, E., Durand, P. \& Le Goffic, F. (1996). Tetrahedron, 52, 11215-11238.
Nonius (1997-2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sawatzki, P., Mikeska, T., Nieger, M., Hupfer, H. \& Kolter, T. (2002). Acta Cryst. E58, o1415-o1417.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL-NT. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Sibi, M. P. (1993). Org. Prep. Procedures Int. 25, 15-40.
Steiner, T. (2002). Angew. Chem. Int. Ed. Engl. 41, 48-76.
Tanaka, K., Yoshifuji, S. \& Nitta, Y. (1988). Chem. Pharm. Bull. 36, 3125-3129.

